Cowbird parasitism of Pale-headed Brush-finch *Atlapetes pallidiceps*: implications for conservation and management

STEFFEN OPPEL, H. MARTIN SCHAEFER, VERONIKA SCHMIDT and BORIS SCHRÖDER

Summary

Pale-headed Brush-finch *Atlapetes pallidiceps* is a restricted-range species that is threatened with extinction due to habitat loss. The total population of 60–80 individuals achieved a reproductive output of only 0.74 young per breeding pair in 2002. Brood parasitism by Shiny Cowbird *Molothrus bonariensis* was a major factor reducing breeding success, affecting 38.5% of broods. Parasitism rates reached 50% in an ungrazed reserve, but only 14% on an adjacent grazed plot. The resulting difference in breeding success was not, however, attributable to vegetation parameters used to describe microhabitat use. Cowbird parasitism rates therefore seem to be influenced largely by factors operating at the landscape level. These may include grazing scheme, topography, humidity and host availability. It is suggested that lower species diversity and bird abundance rendered the grazed site less attractive to cowbirds. Current parasitism rates are of great conservation concern due to the low population size of Pale-headed Brush-finch, and the initiation of controlling measures is pressing. Management options described from intensive cowbird control programmes in North America are reviewed and evaluated for their applicability here. To combine the possibility of further data collection with commencement of immediate conservation action, we consider two alternative approaches. Nest monitoring and cowbird egg removal would enable the study of the distribution of parasitism in relation to landscape and vegetation variables, whereas cowbird shooting and nest monitoring might provide a larger short-term benefit to reproductive output. Habitat management, resumption of some grazing in the reserve and cowbird removal should be considered for the intermediate future.

Introduction

The endemic and Critically Endangered Pale-headed Brush-finch *Atlapetes pallidiceps* has a restricted geographic range and is currently limited to a small side valley of the Río Jubones drainage in southern Ecuador (Collar *et al.* 1992, Agreda *et al.* 1999, BirdLife International 2000). The total population is estimated at 60–80 individuals (Krabbe 2004). While habitat loss from human landscape modification appears to be the main factor responsible for the limited distribution of Pale-headed Brush-finch, the absence of birds from suitable habitat within its former range indicates that other factors may have contributed to its decline (Krabbe 2004). Shiny Cowbird *Molothrus bonariensis*, an obligate brood parasite, is present in large numbers in the Río Jubones drainage, where it prefers warm
and dry habitats (N. Krabbe and F. Sornoza, pers. comm.). It has been observed to parasitize Pale-headed Brush-finch, and cowbird parasitism is considered to have detrimental effects on the localized population of this species. Declines in sensitive species of limited geographic distribution elsewhere have been linked to the detrimental impact of brood parasitism by cowbirds (Brittingham and Temple 1983, DeCapita 2000, Rothstein and Cook 2000).

Cowbirds are largely associated with open forests and non-forest habitats (Coker and Capen 1995, Burhans 1997, Johnsgard 1997, Strausberger 2001) and have therefore benefited to a great extent from anthropogenic landscape modification (Rothstein and Robinson 1994, Donovan et al. 2000, Petit and Petit 2000, Ward and Smith 2000). The range of many cowbird species has expanded following the conversion of forest into fragmented and open habitat (Brittingham and Temple 1983, Peterjohn et al. 2000, Rothstein and Robinson 2000, Smith and Rothstein 2000). Shiny Cowbird is the most widespread brood parasite of South America, and has expanded its range considerably in recent decades (Fulton 1990, Baltz 1995, Cruz et al. 1995, Payne 1997, Kluza 1998, Marin 2000). It is a generalist brood parasite that has been recorded to parasitize 246 different species (Fraga 2002).

Cowbirds adversely affect the breeding success of their hosts through predation (McLaren and Sealy 2000), egg punctures (Massoni and Reboreda 2002), ejection of eggs and nestlings (Dearborn 1996, Wood and Bollinger 1997, Granfors et al. 2001) and competition between nestlings (Dearborn 1998, Lichtenstein and Sealy 1998). Parasitism rates in localities with high cowbird density can reach more than 90% (Payne 1997, Smith 1999), and severely reduce the reproductive output of host species. Songbird species newly exposed to cowbird parasitism often suffer high parasitism rates (Cruz et al. 1995), and the spread of cowbirds has often led to the decline or even local extinction of heavily parasitized host populations (Rothstein and Cook 2000).

Pale-headed Brush-finch was re-discovered in 1998, having been unrecorded for 30 years (Krabbe in press). Its breeding success and the impact of cowbird parasitism have not previously been quantified. In March–July 2002 we surveyed the entire Pale-headed Brush-finch population and determined breeding success and factors affecting reproductive output. We focused our investigation on whether (1) Shiny Cowbirds parasitize a significant part of the population, and (2) whether habitat differences can account for varying breeding success between pairs. We used the results of this investigation to evaluate management schemes currently in place and propose new measures required to secure the population of Pale-headed Brush-finch.

Study area

The study area is located in Yunguilla valley, approximately 50 km south-west of Cuenca in the upper Río Jubones drainage, province of Azuay, Ecuador (3°13′S; 79°16′W). It belongs to a moderately cool tropical area situated in a transitional zone between the arid lower Río Jubones valley and the humid upper reaches of the Andean west slope (Dercon et al. 1998). Mean annual precipitation, mean temperature and growing season differ strongly on a local scale depending on
Cowbird parasitism of Pale-headed Brush-finch Atlapetes palidiceps

elevation and rain shadow. The region is intensively farmed, with corn crops and cattle pastures being the most dominant forms of land use (Dercon et al. 1998).

The study site, where the species was rediscovered in 1998 (Agreda et al. 1999), encompasses two hills of c. 50 ha each, ranging from 1,650–2,100 m above sea-level. One hill has been declared a reserve and has been ungrazed in recent years, whereas a population discovered subsequently on the neighbouring hill inhabits an area that is still grazed by cattle (Carlos and Sornoza 2001). Both hills feature semi-open habitats with dense arid scrub consisting mostly of composite and verbenaceous species, interspersed with grassland of old or recent pastures. Small stands of Acacia sp. and lauraceous trees are found in more humid parts. Fragments of semi-humid forest persist on western and southern slopes. Monocultural stands of dwarf bamboo Chusquea sp. form large patches of habitat in shallow depressions, ravines, and on the western slopes.

Methods

Breeding success survey

Breeding surveys were carried out from daylight to early afternoon every day from late March to early July 2002. Nests were located by following birds back to the nest (Martin and Geupel 1993). The outcome of nests was monitored by regular visits. Intervals between visits to active nests ranged from 3 to 5 days. If nests were found to be empty, the nest contents and surroundings were checked for signs of predation. Subsequently, the specific territory was observed intensively, to determine whether chicks might have fledged. Nest failure was denoted if (1) nests were destroyed and eggshells were found, (2) empty nests were found within 8 days of the last egg-stage visit, or (3) both adults could be observed for 60 consecutive minutes without feeding fledglings or returning to a nest. The last indicated failure because incubating females usually returned to the nest after 20 (± 5) minutes, and fledglings were fed at least every 25 (± 10) minutes (Oppel et al. in press-a). The rate of parasitism was calculated from the number of nests that were found with cowbird eggs or chicks, and from pairs that were feeding dependent cowbird fledglings.

For analysis, we defined every pair that raised at least one brush-finch fledgling throughout the season as successful. All pairs that were not recorded to have fledged at least one brush-finch offspring were labelled unsuccessful.

Habitat measurements

For every independent sighting of a Pale-headed Brush-finch, we recorded the following variables in an estimated 5 m radius circle around the perch site: grazing scheme (grazed or ungrazed), aspect, slope (1 = 0°–20°, 2 = 21°–40°, 3 = > 40°), habitat density (1 = open, 2 = semi-open, 3 = open scrub with visibility > 10°m, 4 = dense scrub with visibility 5–10 m, 5 = dense scrub with visibility < 5 m), vegetation cover (in the following categories: vines, bush, tree, herbaceous ground vegetation and grass, each assessed as 1 = 0–20%, 2 = 21–40%, 3 = 41–60%, 4 = 61–80%, 5 = 81–100%), as well as bamboo cover (in % of total
bush cover), and maximum and average vegetation height (both in cm). Independence of point records was assured by maintaining a 5-minute time lag between consecutive observations of the same individual. Individuals were identified by location and subtle plumage differences between partners. Effective sample size was limited by the small population of (Machlis et al. 1985). We sampled approximately 95% of the entire population, and no individual contributed more than 5% to the dataset.

Statistical analysis

We compared the breeding success between pairs in the grazed and ungrazed part using contingency table analysis and chi-square statistics to test whether differences were significant at $P < 0.05$.

In a second step, we investigated whether successful and unsuccessful pairs of Pale-headed Brush-finch exhibited different microhabitat use patterns in the study area. All point observation data were classified as successful or unsuccessful, and non-parametric tests (Mann–Whitney U-test) were used to examine differences between successful and unsuccessful points. We then applied a multivariate logistic regression, with nesting success as the dependent variable.

For this approach, multicollinearity between variables was reduced by eliminating one of a pair of variables with a Spearman’s correlation coefficient of $r_s > 0.7$ (Sokal and Rohlf 1995, Fielding and Bell 1997). Backward stepwise logistic regression was then applied to the different sets of uncorrelated and less correlated variables to determine which variables significantly contributed to models that differentiated between breeding success states (Hosmer and Lemeshow 2000). We used Akaike’s Information Criterion (AIC) to select the most parsimonious model that offered the highest degree of accuracy with the least variables (Burnham and Anderson 1992, Buckland et al. 1997). These variables were retained for the final model.

The final model was internally validated using the bootstrap procedure (Verbyla and Litvaitis 1989, Reineking and Schröder in press). We calculated receiver operating characteristic (ROC) curves to assess the predictive ability of the final model (Beck and Shultz 1986, Fielding and Bell 1997, Schröder 2002). The area under the ROC curve (AUC) in this case represents the model’s ability to discriminate between nesting success and failure. A random prediction yields an AUC of 0.5, whereas AUC values > 0.7 can be regarded as acceptable, and > 0.8 as excellent (Hosmer and Lemeshow 2000).

Results

We surveyed 26 territories of Pale-headed Brush-finch. In seven territories no breeding attempt was recorded, and in three of these it could not be assessed whether a partner of the territory holder was present. A total of 18 nests were found, and another seven broods were recorded through the observation of adults leading dependent fledglings within their territories. Of the 25 recorded breeding attempts, 10 were successful and in total 17 fledglings were raised in the study area. This corresponded to a mean reproductive output of 0.74 young per confirmed pair, or 0.65 per territory.
Cowbird parasitism of Pale-headed Brush-finch Atlapetes pallidiceps

At least 10 broods were parasitized by Shiny Cowbird, leading to a total of eight cowbird fledglings being raised by Pale-headed Brush-finch. A maximum of two cowbird fledglings were raised per pair, but six of seven successful parasitism events yielded only one cowbird fledgling. Two nests were deserted after being parasitized, and seven nests were predated by unknown predators (Table 1). In four of these it could not be assessed whether they had been parasitized. The minimum overall parasitism rate of the entire population was therefore 38.5%, predation rate of discovered nests was 33.3%, and 16.7% of nests were abandoned or failed due to unknown causes.

The breeding success of the nine pairs in the grazed area was significantly higher than that of the 14 pairs in the ungrazed reserve ($\chi^2 = 9.04$, $df = 1$, $P < 0.001$). The mean reproductive output of Pale-headed Brush-finches in the grazed part was 1.33 young per pair, as opposed to 0.36 young per pair in the reserve (Table 1). Parasitism by Shiny Cowbird was more prevalent in the reserve, with at least 50% of all breeding attempts being parasitized.

Univariate analysis of microhabitat use as described by point observations indicated that successful pairs used points with lower grass cover and higher bush cover (Table 2). Grazing scheme was the only highly significant variable in all alternative logistic regression models. The best model retained grazing scheme, aspect (sin transformed), bamboo, vines and maximum vegetation height as explanatory variables (AIC = 982.792, $n = 746$; Table 3). Model performance was poor, and it had limited ability in classifying breeding success (AUC = 0.676, 95% confidence interval 0.636–0.718, Nagelkerke $R^2 = 0.132$).

Discussion

Pale-headed Brush-finch was exposed to considerable cowbird parasitism within the reserve. Parasitism rates found in this study were minimum figures only,

Table 1. Breeding success of Pale-headed Brush-finch during the 2002 season in Yunguilla valley, Ecuador: a comparison between the ungrazed reserve and a grazed area of approximately equal size. Note that predation and parasitism rates are minimum figures only.

<table>
<thead>
<tr>
<th></th>
<th>Yunguilla reserve, ungrazed</th>
<th>Pasture, grazed</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of pairs</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>Observation effort (hours)</td>
<td>791</td>
<td>75</td>
</tr>
<tr>
<td>Breeding attempts recorded</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>Pairs without recorded broods</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>No. of nests found</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Predate nests</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Parasitized nests</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Successful broods</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Parasitized broods*</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Brush-finch fledglings raised</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>Cowbird fledglings raised</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Mixed broods</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Reproductive output (young/pair)</td>
<td>0.36</td>
<td>1.33</td>
</tr>
<tr>
<td>Parasitism rate</td>
<td>50.00%</td>
<td>14.28%</td>
</tr>
<tr>
<td>Predation rate</td>
<td>43.75%</td>
<td>0</td>
</tr>
</tbody>
</table>

*Including two broods for which no nest was found (see text).
since nests were not monitored on a daily basis and unsuccessful parasitism attempts might have gone unnoticed. Predation rates were probably much higher in the ungrazed reserve than in the grazed area, and only slightly lower than parasitism rates. The detection of nest predation requires more intensive monitoring than applied in this study. Due to the unequal observation effort between grazed and ungrazed sites, we consider the bias too large to derive valid assumptions about nest predation rates. They will, therefore, not be discussed here. The unbalanced observation effort might also have introduced some bias in the pair estimates, since unsuccessful pairs in the grazed plot might have escaped detection. We used a conservative definition of breeding success to overcome the unbalanced observation effort. Successful pairs are easier to find than unsuccessful ones, and the latter required more observation effort to confirm their lack of success. With observation effort in the ungrazed part being roughly 10 times that in the grazed part, no successful pair would have been missed.

We assume that parasitism by Shiny Cowbird is one of the main factors contributing to the differences in breeding success. It should, however, be recognized that cowbird parasitism might have caused only 50% of failures. Moreover, parasitism and predation rates may vary significantly between years, and due to our limited study period we cannot assess the long-term mean of both rates.

Table 2. Microhabitat use of Pale-headed Brush-finch pairs successfully raising offspring versus pairs that failed to raise offspring in the 2002 breeding season in Yunguilla valley, Ecuador. Samples are sightings of individuals (point observations): results are given as mean ± SD, z and P values from Mann–Whitney U-tests.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Successful pairs (n = 284)</th>
<th>Unsuccessful pairs (n = 462)</th>
<th>z</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bush cover (%)</td>
<td>68.08 ± 25.60</td>
<td>64.56 ± 25.43</td>
<td>-1.97</td>
<td>0.048</td>
</tr>
<tr>
<td>Tree cover (%)</td>
<td>4.21 ± 11.27</td>
<td>4.68 ± 11.15</td>
<td>-1.38</td>
<td>0.174</td>
</tr>
<tr>
<td>Grass cover (%)</td>
<td>26.90 ± 27.02</td>
<td>32.52 ± 26.82</td>
<td>-1.97</td>
<td>0.044</td>
</tr>
<tr>
<td>Herb cover (%)</td>
<td>19.33 ± 16.08</td>
<td>18.60 ± 16.56</td>
<td>-1.38</td>
<td>0.172</td>
</tr>
<tr>
<td>Bamboo (%)</td>
<td>23.45 ± 30.23</td>
<td>21.56 ± 31.35</td>
<td>-3.17</td>
<td>0.002</td>
</tr>
<tr>
<td>Vines (1–5)</td>
<td>2.18 ± 1.076</td>
<td>2.09 ± 1.13</td>
<td>-0.97</td>
<td>0.331</td>
</tr>
<tr>
<td>Density (1–5)</td>
<td>3.08 ± 0.99</td>
<td>3.12 ± 1.08</td>
<td>-1.14</td>
<td>0.264</td>
</tr>
<tr>
<td>Maximum height (cm)</td>
<td>455.99 ± 171.77</td>
<td>464.89 ± 177.28</td>
<td>-1.41</td>
<td>0.160</td>
</tr>
<tr>
<td>Average height (cm)</td>
<td>277.78 ± 96.25</td>
<td>273.72 ± 91.95</td>
<td>-0.73</td>
<td>0.468</td>
</tr>
</tbody>
</table>

Table 3. Logistic regression model coefficients and standard error (SE) of habitat variables differentiating between successful and unsuccessful pairs of Pale-headed Brush-finch in Yunguilla valley, Ecuador, based on point observations (n = 746). AUC denotes the area under the ROC curve.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Coefficient</th>
<th>SE</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grazing scheme</td>
<td>1.359</td>
<td>0.197</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Bamboo (%)</td>
<td>0.008</td>
<td>0.003</td>
<td>0.008</td>
</tr>
<tr>
<td>Vines (1–5)</td>
<td>0.162</td>
<td>0.074</td>
<td>0.043</td>
</tr>
<tr>
<td>Maximum height (cm)</td>
<td>-0.001</td>
<td>0.001</td>
<td>0.020</td>
</tr>
<tr>
<td>Aspect (sin transformed)</td>
<td>0.771</td>
<td>0.161</td>
<td>< 0.001</td>
</tr>
<tr>
<td>AUC</td>
<td>0.676</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nagelkerke R^2</td>
<td>0.132</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cowbird parasitism of songbirds is affected by nest concealment and structural diversity of under-storey vegetation (Burhans 1997, Larison et al. 1998, Staab and Morrison 1999, Tewksbury et al. 1999, Uyehara and Whitfield 2000). Both the univariate comparisons and the multivariate logistic regression model indicated that successful and unsuccessful pairs of Pale-headed Brush-finch differed only marginally in their use of vegetation. One of the most important variables in the logistic regression was grazing scheme, which was selected in all alternative models. Probability of breeding success in the grazed part was approximately 4 times as high as probability of failure (Table 3). This suggests that land use had an overriding effect on nesting success that is not explained by microhabitat use of birds.

The positive relationship of vines and bamboo with the probability of breeding success (positive regression coefficients in Table 3) might be related to reduced predation rather than cowbird parasitism. Bamboo and vines are important substrates for nest placement of Pale-headed Brush-finch, and this has been hypothesized to prevent predation by small mammals (Oppel et al. in press-a).

Factors that operate at the landscape scale may govern the distribution of cowbirds if vegetation structure within territories is not different enough to explain elevated parasitism levels (Tewksbury et al. 1999, Young and Hutto 1999). Burhans (1997) suggested that cowbird habitat preferences or host choice at the landscape scale might contribute to differences in parasitism. Steep and narrow valleys (Tewksbury et al. 1999) as well as increased humidity (N. Krabbe pers. comm.) have been suggested to lower cowbird abundance. In Yunguilla valley, western slopes are generally steeper and more humid. Pairs using more west-facing slopes had lower breeding success according to the logistic regression model (Table 3). However, none of these nest failures could be attributed to cowbird parasitism. While the poor performance of the model requires caution when interpreting its results, the lower breeding success on west-facing slopes indicates that humidity might reduce not only cowbird abundance and parasitism rates, but also general habitat quality for Pale-headed Brush-finch.

It has been demonstrated that cowbirds choose their breeding areas with respect to a high diversity and abundance of potential hosts (Barber and Martin 1997, Evans and Gates 1997, Robinson et al. 1999, Tewksbury et al. 1999, Young and Hutto 1999). The generally lower diversity and abundance of bird species in grazed areas (Taylor 1986, Ammon and Stacey 1997, Dobkin et al. 1998, Goguen and Mathews 1998) might have attracted fewer cowbirds and led to lower parasitism rates and therefore higher breeding success of Pale-headed Brush-finch in the grazed area in Yunguilla valley. In turn the ungrazed reserve might have attracted larger numbers of cowbirds through a higher availability of potential hosts. The reserve is currently in a process of succession towards a structurally more diverse vegetation, which often leads to a more diverse avifauna (Dobkin et al. 1998), thus providing more hosts for cowbirds. Pale-headed Brush-finch might be a preferred host due to its nesting habits close to openings (Burhans 1997, Davis and Sealy 2000, Oppel et al. in press-a), and due to its ability to raise two fledglings.

All studies provided to support hypotheses of Shiny Cowbird distribution relate to Brown-headed Cowbird Molothrus ater of North America. Even within
the North American continent, cowbirds exhibit marked regional differences in host and habitat use (Hahn and Hatfield 1995), and it has to be considered that some conclusions may not be transferable to the situation with Shiny Cowbird present in the Yunguilla valley.

While the differences in cowbird parasitism between grazed and ungrazed sites are intriguing, it might be more practical from a conservation perspective to consider Pale-headed Brush-finch as one single population in the Yunguilla valley, especially since the sites are connected and population exchange is not restricted. The data presented in this paper suggest that cowbird parasitism is of great conservation concern. Smith (1999) suggested cowbird control to be justified when parasitism rates exceed 60% over 2 years. This may not be applicable for Pale-headed Brush-finch, since small and isolated populations are not self-sustaining at parasitism levels of greater than 20% (Greene et al. 1999). It therefore seems prudent to initiate management measures reducing the impact of cowbird parasitism.

Management options

Several different approaches have been used to control parasitism rates, or to remove cowbirds. The results of these programmes are highly variable (Rothstein and Cook 2000). The removal of large cowbird numbers at winter roosts or feeding sites has only limited applicability as a management tool, as the high mobility of cowbirds dilutes the removal effect across the landscape and numbers in breeding areas remain unchanged (Rothstein et al. 1987, Rothstein and Robinson 1994).

Most removal programmes in North America rely on large cage-traps as effective means of cowbird control (Hall and Rothstein 1999, Whitfield et al. 1999, Griffith and Griffith 2000, Rothstein and Cook 2000). Selective shooting has also been applied to remove cowbirds, but has yielded mixed results. While Eckrich et al. (1999) acknowledge site-specific shooting as an effective complementary tool to support landscape-scale management, shooting alone did not significantly reduce cowbird parasitism rates at a site in California (Whitfield 2000). Another option to reduce the impact of cowbird parasitism on the reproductive success of hosts is to monitor nests closely and remove cowbird eggs and chicks. While it is intrusive and requires a considerable level of skill (Griffith and Griffith 2000), nest manipulation has been demonstrated to be efficient and cost-effective, especially in remote areas where trapping is impractical (Winter and McKelvey 1999, Kus 2002).

Cowbird control has to be maintained for an infinitely long time, as cowbird populations at a regional level are not affected by most removal programmes (Hall and Rothstein 1999, Whitfield et al. 1999, DeCapita 2000, Hayden et al. 2000, Rothstein and Cook 2000). Despite often leading to reduced parasitism rates, cowbird removal has only occasionally triggered an evident increase in the target host population (Griffith and Griffith 2000), and it has been suggested that habitat quality or quantity might be more limiting than cowbird parasitism rates alone (DeCapita 2000).

Cowbird control does not eliminate the actual causes for declining populations (Hall and Rothstein 1999, Hayden et al. 2000, Rothstein and Cook 2000, Whitfield
Cowbird parasitism of Pale-headed Brush-finch Atlapetes pallidiceps

2000), and alternatives such as habitat restoration should therefore be sought (DeCapita 2000, Griffith and Griffith 2000). The provision of suitable habitat that enables populations to overcome brood parasitism without constant human interference requires solid scientific baseline data (Hall and Rothstein 1999). For Pale-headed Brush-finch, the resumption of low-intensity grazing and selective logging is proposed as a measure to restore and preserve semi-open shrub habitats (Oppel et al. in press-b). However, due to the inherent variability of host — parasite interactions, results from a single field-season might not provide a sufficient basis for management decisions. The implementation of controlling measures is, however, pressing, given the low population size of Pale-headed Brush-finch. We consider two alternative approaches in an attempt to trade off the possibility of taking immediate action with the need to study parasitism patterns.

An intensive monitoring programme for Pale-headed Brush-finch should be carried out in the next breeding season. While variables that might explain parasitism can be recorded at parasitized and unparasitized nests, the removal of cowbird eggs and nestlings could minimize the impact of brood parasitism. This approach would enable the collection of more data on the distribution and causes of cowbird parasitism in the Yunguilla valley, and would help to increase the reproductive output of Pale-headed Brush-finch. It would, however, not reduce the impact associated with adult cowbirds removing eggs or nestlings of Pale-headed Brush-finch. The close monitoring of nests might also lead to increased predation rates (Martin and Geupel 1993). Furthermore, eggs of Shiny Cowbird and Pale-headed Brush-finch are both highly variable and show considerable overlap in colour and marking, rendering their reliable identification very difficult (Oppel et al. in press-a).

An alternative approach would be to take immediate action to reduce cowbird abundance and, potentially, parasitism rates. This would include selective shooting of cowbirds and the removal of tall vegetation (e.g. Agave spp., Eucalyptus spp.) that might serve as cowbird perches (Clotfelter 1998, Hauber and Russo 2000). Changes to the system will, however, limit the chance of further data collection and thus foreclose a better understanding of factors that influence cowbird parasitism. In order to enable further studies, shooting effort would need to be held constant across areas with different landscape features. This might be complicated by restricted access rights to private property. While an immediate reduction of cowbirds is likely to have some benefits for Pale-headed Brush-finch, this needs to be assessed with nest monitoring or breeding success monitoring. The disadvantages of the first approach would therefore apply to the second approach as well.

Acknowledgements

This study was funded by the German Academic Foreign Exchange Service (DAAD grant number 332404010), by the Sweden Club 300 and by the Royal Society for the Protection of Birds. We are grateful to F. Sornoza (Fundacion Jocotoco) and R. S. Ridgely for assistance in the project and granting access to the study area. C. Wickert and J. Heathcote assisted us during nest searches. The work benefited from correspondence with N. Krabbe, F. Bairlein and P. C. Stoddard, who also helped to improve the manuscript with their comments.
References

Cowbird parasitism of Pale-headed Brush-finch *Atlapetes pallidiceps*

S. Oppel et al.

Cowbird parasitism of Pale-headed Brush-finch Atlapetes pallidiceps

STEFFEN OPPEL and BORIS SCHRÖDER
Landscape Ecology Group, Carl-von-Ossietzky University Oldenburg, P. O. Box 2503, 26111 Oldenburg, Germany. E-mail: steffen.oppel@gmx.net

H. MARTIN SCHAEFER and VERONIKA SCHMIDT
Institute of Avian Research, “Vogelwarte Helgoland”, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany

Received 21 February 2003; revision accepted 6 January 2004
Proof Delivery Form

Bird Conservation International

There follows a proof of the article you have written for publication in Bird Conservation International. Please print out the proof of your article from the PDF file. All typographical and factual errors should be corrected. You may be charged for corrections of non-typographical errors. Please check carefully and send your corrections via first class airmail (if you are outside Europe), WITHIN THREE DAYS OF RECEIPT to:

Dr Seb Buckton
The Wildfowl & Wetlands Trust
Slimbridge
Glos GL2 7BT
UK

- You are responsible for correcting your proofs! Errors not found may appear in the published journal.
- The proof is sent to you for correction of typographical errors only. Revision of the substance of the text is not permitted.
- Please answer carefully any queries raised from the sub-editor.
- A new copy of a figure must be provided if correction of anything other than a typographical error introduced by the printer is required.

LATE RETURN OF THESE PROOFS WILL RESULT IN DELAY OF PUBLICATION.
Offprint order form

Bird Conservation International volume…….. no……..

Offprints
25 offprints of each article will be supplied free to each first named author and sent to a single address. Please complete this form and send it to the printer (address below) within 14 days of the date stamped on it. Please give the address to which your offprints should be sent. They will be despatched by surface mail within one month of publication. For an article by more than one author this form is sent to you as the first named. All extra offprints should be ordered by you in consultation with your co-authors.

Number of offprints required in addition to the 25 free copies

Offprints to be sent to (PRINT IN BLOCK CAPITALS) ………
transfer of copyright

Please read the notes overleaf and then complete, sign, and return this form to Gwenda Edwards, Production Controller, Journals, Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge, CB2 2RU as soon as possible.

BIRD CONSERVATION INTERNATIONAL

In consideration of the publication in BIRD CONSERVATION INTERNATIONAL

of the contribution entitled:..
..

by (all authors’ names):..
..

1 To be filled in if copyright belongs to you

Transfer of copyright

I/we hereby assign to BirdLife International, full copyright in all formats and media in the said contribution.

I/we warrant that I am/we are the sole owner or co-owners of the material and have full power to make this agreement, and that the material does not contain any defamatory matter or infringe any existing copyright.

I/we further warrant that permission has been obtained from the copyright holder for any material not in my/our copyright and the appropriate acknowledgement made to the original source. I/we attach copies of all permission correspondence.

I/we hereby assert my/our moral rights in accordance with the UK Copyrights Designs and Patents Act (1988).

Signed (tick one) ☐ the sole author(s) ☐ one author authorised to execute this transfer on behalf of all the authors of the above article

Name (block letters) ..

Institution/Company ...

Signature: .. Date: ..

(Additional authors should provide this information on a separate sheet.)

2 To be filled in if copyright does not belong to you

a Name and address of copyright holder..
..
..
..

b The copyright holder hereby grants to BirdLife International, the non-exclusive right to publish the contribution in the journal and to deal with requests from third parties in the manner specified in paragraphs 4 and 6 overleaf.

(Signature of copyright holder or authorised agent) ..

3 US Government exemption

I/we certify that the paper above was written in the course of employment by the United States Government so that no copyright exists.

Signature: .. Name (Block letters): ..

4 Requests received by Cambridge University Press for permission to reprint this article should be sent to (see para. 5 overleaf)

Name and address (block letters) ..
..
..
..
Notes for contributors

1 The information provided on this form will be held in perpetuity for record purposes. The name(s) and address(es) of the author(s) of the contribution may be reproduced in the journal and provided to print and online indexing and abstracting services and bibliographic databases.

2 The Journal’s policy is to acquire copyright in all contributions. There are two reasons for this: (a) ownership of copyright by one central organisation tends to ensure maximum international protection against unauthorised use; (b) it also ensures that requests by third parties to reprint or reproduce a contribution, or part of it, are handled efficiently and in accordance with a general policy that is sensitive both to any relevant changes in international copyright legislation and to the general desirability of encouraging the dissemination of knowledge.

3 Two ‘moral rights’ were conferred on authors by the UK Copyright Act in 1988. In the UK an author’s ‘right of paternity’, the right to be properly credited whenever the work is published (or performed or broadcast), requires that this right is asserted in writing.

4 Notwithstanding the assignment of copyright in their contribution, all contributors retain the following non-transferable rights:

- The right to (continue to) post a preprint of the contribution on their personal or departmental web page provided the first screen contains the statement that the paper has been accepted for publication in Bird Conservation International published by Cambridge University Press together with the appropriate copyright notice. On publication the full bibliographical details (volume: issue number (date), page numbers) must be inserted after the journal title.
- Subject to file availability, the right to post the contribution as published on their own or their departmental home page provided the first screen includes full bibliographical details and the appropriate copyright notice.
- The right to make hard copies of the contribution or an adapted version for their own purposes, including the right to make multiple copies for course use by their students, provided no sale is involved.
- The right to reproduce the paper or an adapted version of it in any volume of which they are editor or author. Permission will automatically be given to the publisher of such a volume, subject to normal acknowledgement.

5 We shall use our best endeavours to ensure that any direct request we receive to reproduce your contribution, or a substantial part of it, in another publication (which may be an electronic publication) is approved by you before permission is given.

6 Cambridge University Press co-operates in various licensing schemes that allow material to be photocopied within agreed restraints (e.g. the CCC in the USA and the CLA in the UK). Any proceeds received from such licenses, together with any proceeds from sales of subsidiary rights in the Journal, directly support its continuing publication.

7 It is understood that in some cases copyright will be held by the contributor’s employer. If so, BirdLife International requires non-exclusive permission to deal with requests from third parties, on the understanding that any requests it receives from third parties will be handled in accordance with paragraphs 5 and 6 above (note that your approval and not that of your employer will be sought for the proposed use).

8 Permission to include material not in your copyright
If your contribution includes textual or illustrative material not in your copyright and not covered by fair use / fair dealing, permission must be obtained from the relevant copyright owner (usually the publisher or via the publisher) for the non-exclusive right to reproduce the material worldwide in all forms and media, including electronic publication. The relevant permission correspondence should be attached to this form.

If you are in doubt about whether or not permission is required, please consult the Permissions Controller, Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge CB2 2RU, UK. Fax: +44 (0)1223 315052. Email: lnicol@cambridge.org.

Please make a duplicate of this form for your own records